分治算法的名字是divide-and-conquer, 从名字上看一目了然,就是先把一个问题divide成为几个子问题,然后分别解决各个子问题。兵法有云:分而治之,各个击破。
英文释义
divide the problem instance, solve subproblems recursively, combine the results, and thereby conquer the problem
算法内涵
分治算法就是把一个困难的问题分解为一系列的子问题,这些子问题具有如下的特点:
1) 子问题比原问题更新解决
2) 子问题的解可以合并为原问题的解
典型的应用包括回文以及二分查找等。
算法举例
回文
这里的回文是指资格字符串,它从头到尾读与从尾到头读的内容是一致的,比如说doggod,无论从左到右耗时从右到左都是一样的。
1 | def isPal(s): |
可以看出算法就是利用递归不断的处理更小的子问题。
二分查找
二分查找也是典型的分治算法的有应用。二分查找需要一个默认的前提,那就是查找的数列是有序的。
二分查找的思路比较简单:
1) 选择一个标志i将集合分为二个子集合
2) 判断标志L(i)是否能与要查找的值des相等,相等则直接返回
3) 否则判断L(i)与des的大小
4) 基于判断的结果决定下步是向左查找还是向右查找
5) 递归记性上面的步骤
1 | def binarySearch(L,e,low,high): |
最近点问题
假设在坐标平面上分布了一系列的点,那么问题是求取这些点两两之间的最短距离。
最naive的做法当然是穷举法,计算所有的两两点间的距离,然后取最小值。穷举法对于小样本总是不错的。但是对于大样本来说,就不是那么合适了,这里我们用divide-and-conquer算法来解决这一问题。
首先对于所有的点,按照x坐标将其分为两部分,这就是divide,那么最短距离就是左边部分中的最短距离Dl,右边部分的最短距离Dr,以及左右部分之间的距离Dc。对于Dl以及Dr,可以递归的计算得到,这就是conquer。那么唯一的问题就是Dc。我们知道如果最短距离是Dc的话,那么Dc<=min(Dl,Dr)。因此我们只需要计算距离divide分割线S = min(Dl,Dr)的点就可以了。进一步我们可以看到对于每个在2S区域内的点,只需要计算y坐标距离这一点不大于S的点就可以,这样可以进一步简化运算量。
1 | for(i=0;i<NumPointsInStrip;i++) |
总结
分治算法的一个核心在于子问题的规模大小是否接近,如果接近则算法效率较高。
分治算法和动态规划都是解决子问题,然后对解进行合并;但是分治算法是寻找远小于原问题的子问题(因为对于计算机来说计算小数据的问题还是很快的),同时分治算法的效率并不一定好,而动态规划的效率取决于子问题的个数的多少,子问题的个数远小于子问题的总数的情况下(也就是重复子问题多),算法才会很高效。